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Abstract

An iterative classification method developed for 2D
CT head data classification problem and using both sta-
tistical and spatial information is introduced in this pa-
per. The method reduces the chance of misclassifica-
tion, preserving the contiguity of tissue classes. This
method is minimally supervised so that it enforces a re-
lation between tissues and classes. In later iterations
high-confidence points are used to help classify nearby
ambiguous points, based on the assumption that points
in close proximity and of comparable intensities are
probably representing the same tissue class.

1. Introduction

The classification of CT head data has many useful
applications in the planning and simulation of ENT and
neuro-surgical interventions. Our objective is a method
that yields a clinically useful tissue map, in which air,
soft tissues, bone of both high and low density, as well
as possible surgical landmarks are distinguished. For
a method to be successful, it must overcome the ambi-
guities caused by image noise, partial volume effects,
as well as overlap in intensities between different tis-
sue classes. Moreover, any assumption used to allevi-
ate these ambiguities must hold for typical patient data.
One such assumption is that tissue is in general contigu-
ous. A single-pass classification method based on solely
statistical information will in general not produce con-
tiguous tissues. In contrast, an iterative classification
can benefit from blobs of high-confidence points that in-
fluence neighboring ambiguous points that are in close
proximity and of comparable intensity.

In this paper, an iterative classification method,
adapted from Bayesian Level Sets [6] and incorporating
both statistical and spatial information, is introduced.
One difficulty of such a method is a suitable choice of
high-confidence points in the first iteration. Our solu-
tion is a minimally supervised method using a small
number of training points together with a large num-
ber of unlabeled points. The method aims to reduce the
chance of misclassification, preserve the contiguity of
tissue classes, and retain small and narrow structures.

Thereafter, distances between high-confidence
points and ambiguous points are computed and the 1D
problem is cast as an iterative classification in N+1-
dimensional feature space consisting of both intensity
and N distances to nearest blobs of high-confidence
points, for an N-class problem. New high-confidence
points are selected at the end of each iteration due to
a membership function based on both intensity and
distances and the rest ambiguous points become closer
to the high-confidence points. The process ends when
there are no ambiguous points left.

2. High-Confidence Points Initialization

2.1 Minimally Supervised Expectation Maxi-
mization of Gaussian Mixture Model

In the first iteration of our iterative classification
method, high-confidence (HC) points are selected for
each tissue class. The choice of HC points should be of
sufficiently high density to be useful thereafter, while
not penalizing small or thin tissue structures, and still
excluding misclassified points of each tissue class. The
consideration of the CT histogram as a Gaussian Mix-
ture Model[1], whose modes coincide with relevant tis-
sues, suggests an interpretation that leads to a definition
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of HC points. Combined with a carefully chosen size
threshold applied through a component labeling algo-
rithm, the method leads to an intuitive and robust defi-
nition of HC points in the first iteration.

Firstly, we focus on the intensity histogram of the
given images. In practice, due to the inhomogeneity of
the tissues, the occurrence of image noise, partial vol-
ume effect or overlap between different tissue classes,
the histogram looks like a combination of N Gaussian
lobes for an N-class problem. The density function of a
1D Gaussian Mixture Model has such a form:

f(g|θ) =
∑N

k=1
αkp(g|µk, σk) (1)

p(g|µk, σk) = (2πσk)−1/2e
− 1

2σk
(g−µk)2

, (2)

where g denotes a grey-level of the histogram. The
estimation of the parameters θ consisiting of average
intensities µk, standard deviations σk and mixing pro-
portions αk can be solved by using training points or
the Expectation Maximization (EM) algorithm[2, 1].
A small number of training points is available in our
method. The parameters µk and σk are initialized from
the training points, while the parameter αk is initialized
from the amplitudes and areas of the relevant lobes. The
EM algorithm will then use the preliminary estimation
as an initialization and iteratively refine the estimation
to make it more precise.(Fig. 1(a))

Figure 1. GMM & HC Points Selection

The EM algorithm refines the estimation by itera-
tively solving a maximum-likelihood estimation prob-
lem. In each iteration there are two steps: the
E(xpectation)-step and the M(aximization)-step. Let
set G = {g} denote the intensity of points and set
Y = {y} denote the relationship between points and
tissue classes, i.e. yi = c implies that point i belongs
to tissue class c. In the E-step, the expected value Q of
the log-likelihood log p(G, Y |θ) with respect to set Y
given the intensity set G and the current estimation of
the parameters θ is computed. Thus, we have

Q(θ, θt−1) = EY [log
∏M

i=1
p(gi, Y |θ)|gi, θt−1] (3)

s.t.
∑N

k=1
p(yi = k|θ) = 1, (4)

where M is the number of the points in the CT image,
while N is the number of tissue classes.

The M-step aims to find the parameter estimation
that leads to the maximum expected value Q(θ, θt−1).
That is

θt = arg max
θ

Q(θ, θt−1), (5)

A numerical method for the estimation is given in [1].

2.2 High-Confidence Points Selection

High-confidence points are those points which have
the least chance to be misclassified for each class. Two
thresholds are used for HC points selection, a statistical
intensity based threshold and a size threshold for con-
tiguous blobs. The statistical threshold is based on the
GMM model and the size threshold is then applied on
the result of using the previous threshold.

For each individual Gaussian component in the
GMM model, we first choose the points with statis-
tically the least chance to be misclassified. For the
left-most Gaussian distribution, the intensities in the
left-most lobe are selected, since very few points from
other distributions fall in that area. For the same rea-
son, the intensities in the right-most lobe of the right-
most Gaussian distribution are selected. For the middle
Gaussian distributions, intensities near the peaks are se-
lected. (Fig. 1(b))

When the image is very noisy or the intensity ranges
of different classes overlap significantly with each
other, it is still possible that some misclassified points
are selected as HC points by using the statistical thresh-
old. This problem can not always be solved by raising
the threshold of probability. A size threshold is intro-
duced to solve this problem. According to the assump-
tion of tissue contiguity, the misclassified points re-
maining after the statistical threshold are more likely to
be separated. A size threshold, which discards the blobs
of smaller size than the given threshold, can get rid of
those misclassified points. The component labeling[4]
algorithm is used to compute the size of blobs.

3. Iterative Classification

After the first iteration, we obtain the HC points
set for each tissue class. In the subsequent iterations,
the HC points are used to affect the nearby ambiguous
points according to intensity similarity and distances.
The distances are computed through the Fast March-
ing method[5], a numerical algorithm for simulating a
monotonically propagating front by solving the Eikonal
Equation F |∇T | = 1 with emphasis on efficiency.

In the Eikonal Equation, F indicates the speed at
which a 2D front passes a point, while T stands for the
time that the front arrives at a point. The Fast Marching



method starts with an initial contour coinciding here
with the boundary of HC blobs. A speed image stores
the speed for every point in the image. The result of the
Fast Marching method is an Arrival Time map, while
the arrival time of the points on the initial contour is
set as zero. When we set the speed function to be re-
lated to the intensity similarity between an ambiguous
point and HC points, the arrival time is impacted by two
factors: the intensities of the points and Euclidean dis-
tances from HC blobs of each class to each ambigu-
ous point. In other words, the arrival time indicates
an intensity-weighted distance instead of the Euclidean
distance.

In an N-class problem, we set N speed images, one
for each tissue class. The speed function is set as

F (x, c) =

1 + min
k

(I(x)− I(k))

1 + |I(x)− I(c)|
, (6)

where x denotes the point, c indicates a tissue class and
I(c) is the average intensity of the HC points in class c.
The function reaches its maximum, when I(c) is closest
to I(x). The other N-1 speeds at point x will be smaller.
The larger the difference between an I(c) and the I(x)
is, the slower the speed is.

An improvement for computing the distances is
made according to such a consideration that blobs
consisting of HC points of other classes should not
be passed through when computing distances, which
means that the distance computation should not cross
the HC blobs of the other tissue classes. The intention
of this consideration is to preserve the contiguity of tis-
sues.

After getting the distances between HC points and
ambiguous points, we try to find the new HC points.
This time we form a membership function for each
point with both intensity and distance as parameters.
The reason for using membership functions instead of
using a multivariate GMM-EM method again is that the
distributions of distances are usually not Gaussian dis-
tributions. The general form of the function is

U(x, c) = βUI(x, c) + (1− β)UD(x, c) (0 ≤ β ≤ 1) (7)

UI(x, c) =
(1 + |I(x)− I(c)|)−1∑N

k=1
(1 + |I(x)− Ik|)−1

(8)

UD(x, c) =
(1 + D(x, c))−1∑N

k=1
(1 + D(x, k))−1

(9)

UI(x, c) implements the influence of the intensity of
the point. I(x) denotes the intensity of point x and I(c)
denotes the average intensity of tissue class c, while N
is the number of classes. |I(x) − I(c)| reaches its min-
imum and UI(x, c) reaches its maximum, when c de-
notes the tissue class with the closest average intensity
to the intensity of point x.

Figure 2. Iteration Process (a) Original CT data;

(b) HC points in the first iteration; (c) HC points in a middle

iteration; (d) Final result

UD(x, c) implements the effect of the distances.
D(x, c) denotes the distance between point x and the
nearest HC blob of tissue class c. D(x, c) reaches its
minimum and UD(x, c) reaches its maximum when c
represents the tissue class which is the closest in prox-
imity to point x.

A size threshold is also needed here to eliminate the
small blobs and preserve tissue contiguity. This method
is preferred to morphological erosion, which would un-
duly wipe out thin bone structures.

4. Results & Discussions

Fig. 2 illustrates the iteration process. Figure 2(b)
shows the HC points selected by the method in Section
2. New HC points are then iteratively selected with the
method in Section 3 and figure 2(c) illustrates one of the
middle results. Figure 2 (d) is the result of our method.

Fig. 3 illustrates the evolution of the six features
of each point (intensity and five distances to five tissue
classes) during the iteration process with a parallel co-
ordinate plot[3]. Each point is converted to a line which
intersects with the six axes (one axis for one feature) ac-
cording to the corresponding feature values. A distance
value of -1 means the point is a HC points of the tis-
sue class. The white lines show the ambiguous points,
while the color lines shows the HC points. The number
of white lines reduces and the distribution of white lines
changes during the process (from top to bottom).

At first, the white lines cover most part on the five
distance axes. During the iterations, the intersection
points on each distance axis move in two directions:
moving up means that the point is less probably repre-
senting the tissue class of that axis, while moving down
means that the point is more probably representing that
tissue class. This motion of the intersection points re-
flects the classification becoming unambiguous.



Figure 3. The Evolution of the 6 Features:
From top to bottom: iteration 1; middle iteration; final result

Figure 4. Comparison (with & without
Spatial Information) (a)σ = 36, (b)σ = 44, (c)σ =

57; row 1: histogram; row 2: CT data with noises; row 3:

Single stage GMM-EM method; row 4: Our iterative method

Table 1: Sensitivity and Specitivity of the Results

ass. air bone bone soft tissue landmark

(hard) (soft)

σ = 0 (S) se 0.958 0.802 0.588 0.992 0.872

σ = 0 (S) sp 0.996 0.988 0.994 0.918 1.000

σ = 0 (I) se 0.969 0.779 0.820 0.992 0.876

σ = 0 (I) sp 0.994 0.996 0.990 0.938 1.000

σ = 36 (S) se 0.936 0.729 0.498 0.917 0.533

σ = 36 (S) sp 0.990 0.989 0.938 0.902 1.000

σ = 36 (I) se 0.959 0.802 0.589 0.992 0.873

σ = 36 (I) sp 0.996 0.988 0.994 0.918 1.000

σ = 44 (S) se 0.911 0.689 0.503 0.751 0.565

σ = 44 (S) sp 0.961 0.986 0.848 0.893 0.993

σ = 44 (I) se 0.960 0.810 0.578 0.988 0.899

σ = 44 (I) sp 0.995 0.987 0.995 0.917 1.000

σ = 57 (S) se 0.839 0.560 0.437 0.530 0.624

σ = 57 (S) sp 0.870 0.961 0.786 0.848 0.994

σ = 57 (I) se 0.957 0.798 0.572 0.963 0.869

σ = 57 (I) sp 0.990 0.985 0.980 0.921 1.000

S = single-stage method; I = iterative method; se = sensitivity; sp = specitivity;

In Fig. 4, artificial Gaussian noise is added to
the original CT data to illustrate the robustness of our
method to noise. Comparing to the single stage GMM-
EM method, our method is less sensitive to the noise
and basically preserves tissue contiguity. The assess-
ment of sensitivity and specitivity is listed in table 1 by
comparing our results to a manually segmented result.
The results from the experiment on some other test data
are showed in Fig. 5.

Figure 5. Results on Other Test Data

5. Conclusion

In this paper, we have developped an iterative classi-
fication method for 2D CT data. The method uses both
statistical and spatial information to reduce the chance
of misclassification, maintain tissue contiguity and re-
tain the narrow structures. It improves the Bayesian
Level Sets method through greater relevance to tissues,
in the context of a minimally supervised classification.
The method will in the future be extended to 3D CT
data based on 3D Fast Marching method.
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